<u>Fakultative Ergänzung zum obligatorischen Lehrplan – ES-Zweig – Klassen 11 und 12</u>

- Algorithmen:

Inhalt	Fähigkeiten
- Zahlentabellen	- Sortierungs- und Suchalgorithmen (z. B. Zwischenwerte) einer Wertetabelle (vgl. Seite 10 des Programmes: Zahlenmengen, um zum Beispiel Verkaufshits einer Datenmenge, den größten oder den kleinsten Wert eine Menge, den Median oder den Modus zu bestimmen)
	- Berechnung aller Glieder einer Folge (explizit oder implizit definiert) bis zu einem bestimmten Rang mit oder ohne Tabelle je nachdem wieviel Speicherraum zugelassen wird
	- Umsetzung des Sekantenverfahrens und des Newtonverfahrens
- Random-Funktion	- Simulation von Zufallsexperimenten, die zu den üblichen Gesetzen führen.
	- Näherungsberechnung eines Integrals mit der Monte-Carlo-Methode

- Kontiuierliche Wahrscheinlichkeitsverteilung:

Inhalt	Fähigkeiten
Kontinuierliche Zufallsvariable und	Die Schüler:
Schreibweise der Dichtefunktion	- können anhand von Beispielen zwischen einer
- Schreibweise einer stetigen Zufallsvariablen	diskreten Zufallsvariablen und einer stetigen
- Schreibweise der Dichtefunktion	Zufallsvariablen unterscheiden.
- Gleichverteilung über dem Intervall [a; b]	- kennen und können die Dichtefunktion einer
- Erwartungswert einer Zufallsvariable bei einer	Gleichverteilung über [a; b] verwenden, um die
Gleichverteilung	Wahrscheinlichkeit zu berechnen.
- Beziehung zwischen der Dichtefunktion über	- kennen die Definition einer Dichtefunktion und
einem Intervall und der kumulierten	können zu ausgewählten Beispielen überprüfen, ob
Wahrscheinlichkeit für eine stetige Verteilung	eine Funktion eine Dichtefunktion ist.

Exponentialverteilung

Die Schüler:

- können eine Wahrscheinlichkeit für eine Exponentialverteilung berechnen.
- können bei einer Exponentialverteilung den Erwartungswert einer Variablen mit Hilfe der Formel $\lim_{x\to+\infty}\int_0^x tf(t)dt$, wobei f die Dichtefunktion der Exponentialverteilung sei, bestimmen.
- wissen, dass bei einer Exponentialverteilung mit dem Parameter λ der Erwartungswert einer Zufallsvariablen $\frac{1}{\lambda}$ entspricht.

Normalverteilung und Gaußkurve

- Normalverteilung $N(\mu; \sigma^2)$ Erwartungswert μ und Standartabweichung σ .
- Standardnormalverteilung N(0; 1)
- Satz von Moivre-Laplace

Die Schüler:

- kennen die Schreibweise der Normalverteilung und der Standardnormalverteilung
- wissen, dass für eine genügend große Stichprobe das entsprechende Histogramm sich einer stetigen Kurve nähert (insbesondere der Gaußkurve im Fall der Zufallsvariable, die einer Binominialverteilung unterliegt).
- kennen die Dichtefunktion $f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ der Standardnormalverteilung N(0; 1) und können ihr Schaubild graphisch darstellen.
- kennen die Gleichung der Funktion, ihr Schaubild und die Eigenschaften der entsprechenden Verteilungsfunktion
- wissen, dass eine Zufallsvariable X einer Verteilung $N(\mu; \sigma^2)$ folgt, wenn die Zufallsvariable $Z = \frac{X \mu}{\sigma}$ der Normalverteilung N(0; 1) folgt.
- können einen Taschenrechner (GTR), eine Tabelle oder Tabelle der Standardnormalverteilung N(0; 1) verwenden, um die Wahrscheinlichkeit im Rahmen der Normalverteilung $N(\mu; \sigma^2)$ zu berechnen.
- kennen die Näherungswerte $u_{0,05} \approx 1,96$ und $u_{0,01} \approx 2,58$.
- können eine Binominialverteilung durch eine Normale annähern, wenn sich es anbietet (Galtonexperiment) und können die Wahrscheinlichkeit mit Hilfe des Satzes von Moivre-Laplace berechnen.